
Minimum Snap Trajectory Generation and Control for Quadrotors

Daniel Mellinger and Vijay Kumar

Abstract— We address the controller design and the tra-
jectory generation for a quadrotor maneuvering in three
dimensions in a tightly constrained setting typical of indoor
environments. In such settings, it is necessary to allow for
significant excursions of the attitude from the hover state and
small angle approximations cannot be justified for the roll
and pitch. We develop an algorithm that enables the real-time
generation of optimal trajectories through a sequence of 3-D
positions and yaw angles, while ensuring safe passage through
specified corridors and satisfying constraints on velocities,
accelerations and inputs. A nonlinear controller ensures the
faithful tracking of these trajectories. Experimental results
illustrate the application of the method to fast motion (5-10
body lengths/second) in three-dimensional slalom courses.

I. INTRODUCTION

The last decade has seen many exciting developments in
the area of micro Unmanned Aerial Vehicles that are between
0.1-0.5 meters in length and 0.1-0.5 kilograms in mass
[1]. In particular, there has been extensive work on multi-
rotor aircrafts, with many recent advances in the design [2],
control [3] and planning [4] for quadrotors, rotorcrafts with
four rotors. Our focus in this paper is on the modeling,
controller design, and trajectory generation for quadrotors.

Most of the work in this area uses controllers that are
derived from linearization of the model around hover con-
ditions and are stable only under reasonably small roll
and pitch angles [5]. Exploring the full state space using
reachability algorithms [6], incremental search techniques [7]
or LQR-tree-based searches [8] is impractical for a dynamic
system with six degrees of freedom. Some work in this area
has addressed aerobatic maneuvers [3, 6, 9, 10]. However,
there are no stability and convergence guarantees when the
attitude of the rotor craft deviates substantially from level
hover conditions. While machine learning techniques have
been successful in learning models using data from human
pilots [9] and in improving performance using reinforce-
ment learning [3], these approaches do not appear to lend
themselves to motion planning or trajectory generation in
environments with obstacles. Similar problems have been
addressed using model predictive control (MPC) [11, 12].
With these approaches, guarantees of convergence are only
available when the linearized model is fully controllable [12]
or if a control Lyapunov function can be synthesized [13].
As such it appears to be difficult to directly apply such
techniques to the trajectory generation of a quadrotor.

In this paper, we address the controller design and the
trajectory generation for a quadrotor maneuvering in three-
dimensions in a tightly constrained setting typical of indoor

This work was supported by ONR Grants N00014-07-1-0829 and
N00014-09-1-1051 and ARL Grant W911NF-08-2-0004.

D. Mellinger and V. Kumar are with the GRASP Lab, University of
Pennsylvania, {dmel, kumar}@seas.upenn.edu.

xB

yB

zB

yC

xC !"

!"

xW

yW

zW

r
yC

xC

zC

OB
1

2
3

4

Fig. 1. The flat outputs and the reference frames.

environments. In such settings, it is necessary to develop
flight plans that leverage the dynamics of the system instead
of simply viewing the dynamics as a constraint on the
system. It is necessary to relax small angle assumptions and
allow for significant excursions from the hover state. We
develop an algorithm that enables the generation of optimal
trajectories through a series of keyframes or waypoints in
the set of positions and orientations, while ensuring safe
passage through specified corridors and satisfying constraints
on achievable velocities, accelerations and inputs.

II. MODEL

The coordinate systems including the world frame,W , and
body frame, B, as well as the propeller numbering convention
for the quadrotor are shown in Fig. 1. Because we want to
control attitudes that represent large deviations from hover,
to avoid singularities we use rotation matrices to represent
frame orientations. We also use Z − X − Y Euler angles
to define the roll, pitch, and yaw angles (φ, θ, and ψ) as a
local coordinate system. The rotation matrix from B to W
is given by WRB = WRC

CRB where WRC represents the
yaw rotation to the intermediate frame C and CRB represents
the effect of roll and pitch. The angular velocity of the robot
is denoted by ωBW , denoting the angular velocity of frame
B in the frame W , with components p, q, and r in the body
frame:

ωBW = pxB + qyB + rzB . (1)

These values can be directly related to the derivatives of the
roll, pitch, and yaw angles.

Each rotor has an angular speed ωi and produces a force,
Fi, and moment, Mi, according to

Fi = kFω
2
i , Mi = kMω

2
i .

In practice, the motor dynamics are relatively fast com-
pared to the rigid body dynamics and the aerodynamics so for
the controller development in this work we assume they can
be instantaneously achieved. Therefore the control input to
the system can be written as u where u1 is the net body force

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 2520

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

u2, u3, u4 are the body moments which can be expressed
according to the rotor speeds as

u =


kF kF kF kF
0 kFL 0 −kFL

−kFL 0 kFL 0
kM −kM kM −kM



ω2
1

ω2
2

ω2
3

ω2
4

 , (2)

where L is the distance from the axis of rotation of the rotors
to the center of the quadrotor.

The position vector of the center of mass in the world
frame is denoted by r. The forces on the system are gravity,
in the −zW direction, and the sum of the forces from each
of the rotors, u1, in the zB direction. Newton’s equations of
motion governing the acceleration of the center of mass are

mr̈ = −mgzW + u1zB . (3)
The angular acceleration determined by the Euler equa-

tions is

ω̇BW = I−1
−ωBW × IωBW +

 u2
u3
u4

 , (4)

where I is the moment of inertia matrix referenced to the
center of mass along the xB − yB − zB axes. The state of
the system is given by the position and velocity of the center
of mass and the orientation (locally parameterized by Euler
angles) and the angular velocity:

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r]
T
,

or without the parameterization by the the position and
velocity of the center of mass and the rotation matrix WRB
and the angular velocity ωBW .

III. DIFFERENTIAL FLATNESS

In this section we show that the quadrotor dynamics with
the four inputs is differentially flat [14]. In other words, the
states and the inputs can be written as algebraic functions of
four carefully selected flat outputs and their derivatives. This
facilitates the automated generation of trajectories since any
smooth trajectory (with reasonably bounded derivatives) in
the space of flat outputs can be followed by the underactuated
quadrotor. Our choice of flat outputs is given by

σ = [x, y, z, ψ]T ,

where r = [x, y, z]T are the coordinates of the center of mass
in the world coordinate system and ψ is the yaw angle. We
will define a trajectory, σ(t), as a smooth curve in the space
of flat outputs:

σ(t) : [t0, tm]→ R3 × SO(2). (5)
We will now show that the state of the system and the control
inputs can be written in terms of σ and its derivatives.

The position, velocity and acceleration of the center of
mass are simply the first three terms of σ, σ̇, and σ̈,
respectively. To see that WRB is a function of the flat outputs
and their derivatives, consider the equation of motion (3).
From (3),

zB =
t

‖t‖
, t = [σ̈1, σ̈2, σ̈3 + g]

T
, (6)

which defines the body frame z axis of the quadrotor. Given
the yaw angle, σ4 = ψ, we can write the unit vector

xC = [cosσ4, sinσ4, 0]
T
,

as shown in Figure 1. We can determine xB and yB as
follows:

yB =
zB × xC
‖zB × xC‖

, xB = yB × zB ,

provided xC × zB 6= 0. In other words, we can uniquely
determine

WRB = [xB yB zB]

provided we never encounter the singularity where zB is
parallel1 to xC .

To show the angular velocity is a function of the flat
outputs and their derivatives, take the first derivative of (3):

mȧ = u̇1zB + ωBW × u1zB . (7)
Projecting this expression along zB , and using the fact that
u̇1 = zB · mȧ, we can substitute u̇1 into (7) to define the
vector hω as

hω = ωBW × zB =
m

u1
(ȧ− (zB · ȧ)zB).

hω is the projection of m
u1
ȧ onto the xB − yB plane. If we

write the body frame components of angular velocity as in
(1) the components p and q are found as

p = −hω · yB , q = hω · xB .
The third component r is found by simply writing ωBW =
ωBC+ωCW and observing that ωBC has no zB component:

r = ωCW · zB = ψ̇zW · zB .

The components of the angular acceleration αBW along
xB and yB are found by computing the second of derivative
of (3) and following the same procedure as above. To find
the zB component of αBW we use the fact that

αBW = αBC + ωCW × ωBC + αCW ,

and note αBC · zB = 0 and zB · ωCW × ωBC = 0. The zB
components of αBW is

αBW · zB = αCW · zB = ψ̈zW · zB .
The net thrust from the quadrotor propellers is seen to

be a direct function of the flat outputs and their derivatives
from (3,6), u1 = m‖t‖. Given that the angular velocity
and acceleration are functions of the flat outputs and their
derivatives we use the Euler equations (4) to compute the
inputs u2, u3, and u4.

IV. CONTROL

We now present a controller to follow specified trajec-
tories, σT (t) = [rT (t)

T , ψT (t)]
T . This controller is similar

to the one in our previous work [15] with some exceptions
that will be pointed out later. First we define the errors on
position and velocity as

ep = r− rT , ev = ṙ− ṙT .

Next we compute the desired force vector for the controller
and the desired body frame z axis:

Fdes = −Kpep −Kvev +mgzW +mr̈T ,

1Although from a theoretical standpoint we can determine WRB from
the flat outputs and their derivatives almost everywhere, there is a practical
limitation in using this map at points near this singularity since the rotation
matrix can undergo large changes even with small changes of the flat output.
Our practical fix to this problem is discussed later in Section IV.

2521

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

where Kp and Kv are positive definite gain matrices. Note
that here we assume ‖Fdes‖ 6= 0. Next we project the desired
force vector onto the actual body frame z axis in order to
compute the desired force for the quadrotor and the first
input:

u1 = Fdes · zB .

To determine the other three inputs, we must consider the
rotation errors. First, we observe that the desired zB direction
is along the desired thrust vector:

zB,des =
Fdes
‖Fdes‖

.

Thus if e3 = [0, 0, 1]T , the desired rotation WRB denoted
by Rdes for brevity is given by:

Rdese3 = zB,des.

Knowing the specified yaw angle along the trajectory, ψT (t),
we compute xB,des and yB,des as in the previous section:

xC,des = [cosψT , sinψT , 0]
T
,

and

yB,des =
zB,des × xC,des
‖zB,des × xC,des‖

, xB,des = yB,des × zB,des,

provided xC,des × zB,des 6= 0. This defines the desired
rotation matrix Rdes. While mathematically this singularity
is a single point in SO(3), this computation results in large
changes in the unit vectors in the neighborhood of the
singularity. To fix this problem, we observe that −xB,des
and −yB,des are also consistent with the desired yaw angle
and body frame z axis. In practice we simply check which
one of the solutions is closer to the actual orientation of the
quadrotor in order to calculate the desired orientation, Rdes.

Next we define the error on orientation:
eR =

1

2
(RTdes

WRB −WRTBRdes)
∨

where ∨ represents the vee map which takes elements of
so(3) to R3. This is the major departure from [15] where
the angular errors were computed using the small angle
assumption.

The angular velocity error is simply the difference be-
tween the actual and desired angular velocity in body frame
coordinates:

eω = B [ωBW]− B [ωBW,T].

Now the desired moments and the three remaining inputs are
computed as follows:

[u2, u3, u4]
T
= −KReR −Kωeω, (8)

where KR and Kω are diagonal gain matrices. This allows
unique gains to be used for roll, pitch, and yaw angle
tracking. Finally we compute the desired rotor speeds to
achieve the desired u. In practice, this is done by inverting
the linearization of (2) about ωi =

√
u1

4kF
.

Note that the linearization about the hover point for this
controller is the same as the controller presented in our
previous work [15]. This nonlinear controller presented here
adds two new important features. First, the orientation error
is not based on the Euler angles which contain singularities.
Second, the desired force is projected onto the actual z
body axis. Proofs of stability and convergence are presented

for a similar controller in [16] but with (a) the addition of
feedforward terms including the angular acceleration; (b) the
inclusion of feedback terms cancelling the ω×Iω in (8); (c)
the assumption that all gain matrices are scalar multiples
of the identity (e.g., KR = kRI); (d) the assumption that
motor dynamics are insignificant; and (e) perfect knowledge
of m and I. Under these conditions the dynamics are
exponentially stable provided the initial conditions satisfy
two conditions:

tr
[
I −RTdes(0)WRB(0)

]
< 2,

‖eω(0)‖2 <
2

λmin(I)
kR(1−

1

2
tr
[
I −RTdes(0)WRB(0)

]
),

and almost globally exponential attractiveness of the com-
plete dynamics with less restrictive conditions. Our realiza-
tion of the controller is different and does not quite satisfy
all the assumptions listed above. However, as we will see in
Section VI, the controller yields good tracking performance
even with very large roll and pitch angles.

V. TRAJECTORY GENERATION

We define a keyframe as a position in space along with
a yaw angle. Consider the problem of navigating through
m keyframes at specified times. In between each keyframe
there is a safe corridor that the quadrotor must stay within.
A trivial trajectory that satisfies these constraints is one that
interpolates between keyframes using straight lines. However
this trajectory is inefficient because it has infinite curvature
at the keyframes which requires the quadrotor to come to a
stop at each keyframe.

Our method generates an optimal trajectory that smoothly
transitions through the keyframes at the given times while
staying within safe corridors. Building on the results of
Section III, we consider trajectories in the flat output space
of the form of (5). It is convenient to write them as piecewise
polynomial functions of order n over m time intervals as:

σT (t) =


∑n
i=0 σTi1t

i t0 ≤ t < t1∑n
i=0 σTi2t

i t1 ≤ t < t2
...∑n

i=0 σTimt
i tm−1 ≤ t ≤ tm

(9)

The reason for the choice of this basis is simple. We are
interested in finding trajectories that minimize functionals
which can be written using these basis functions. The op-
timization program to solve this problem while minimizing
the integral of the krth derivative of position squared and
the kψth derivative of yaw angle squared (without corridor
constraints) is shown below.

min
∫ tm
t0

µr

∣∣∣∣∣∣dkr rTdtkr

∣∣∣∣∣∣2 + µψ
dkψψT

dtkψ

2

dt (10)

s.t. σT (ti) = σi, i = 0, ...,m
dpxT
dtp |t=tj = 0 or free, j = 0,m; p = 1, ..., kr
dpyT
dtp |t=tj = 0 or free, j = 0,m; p = 1, ..., kr
dpzT
dtp |t=tj = 0 or free, j = 0,m; p = 1, ..., kr
dpψT
dtp |t=tj = 0 or free, j = 0,m; p = 1, ..., kψ

where µr and µψ are constants that make the integrand
nondimensional. Here σT = [xT , yT , zT , ψT]

T and σi =

2522

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

[xi, yi, zi, ψi]
T . We enforce continuity of the first kr deriva-

tives of rT and first kψ derivatives of ψT at t1,...,tm−1.
The cost function in (10) is similar to that used by Flash

and Hogan [17] who showed human reaching trajectories
appear to minimize the integral of the square of the norm
of the jerk (the derivative of acceleration, kr = 3). In our
system, since the inputs u2 and u3 appear as functions of the
fourth derivatives of the positions, we generate trajectories
that minimize the integral of the square of the norm of the
snap (the second derivative of acceleration, kr = 4). Since
the input u4 appears in the second derivative of the yaw
angle we use kψ = 2. The basis (9) allows us to go to
higher order polynomials which can potentially allow us to
satisfy different constraints on the states and the inputs.

We can formulate the problem as a quadratic pro-
gram (or QP) by writing the constants σTij =
[xTij , yTij , zTij , ψTij]

T as a 4nm×1 vector c with decision
variables {xTij , yTij , zTij , ψTij}:

min cTHc+ fT c (11)
s.t. Ac ≤ b

Here the objective function incorporates the minimization of
the functional while the constraints can be used to satisfy
constraints on the flat outputs and their derivatives and thus
constraints on the states and the inputs. A specification of
an initial condition, final condition, or intermediate condition
on any derivative of the trajectory (e.g., dkxT

dtk
|t=ti) can be

written as an equality constraint in (11). If conditions do not
need to be specified exactly then they can be represented
with an inequality constraint in (11). After computing the
trajectory, the methods described in Section III can be used
to calculate the angular velocities, angular accelerations, total
thrust, and moments required over the entire trajectory.
A. Nondimensionalization

We note that in (10) the quantities xT , yT , zT , and ψT are
decoupled in both the cost function and the constraints so this
problem can be separated into four optimization problems.
We now consider a general form of the optimization problem
for a nondimensional variable w̃(τ) where τ represents
nondimensionalized time:

min
∫ 1

0
dkw̃(τ)
dτk

2

dτ (12)
s.t. w̃(τi) = w̃i, i = 0, ...,m

dpw̃(τ)
dτp |τ=τj = 0 or free, τj = 0, 1; p = 1, ..., k

Next we introduce the dimensional time, t = ατ , (assuming
t0 = 0 without loss of generality) and the dimensional
variable, w, defined as

w(t) = w(ατ) = β1 + β2w̃(τ).

Next we rewrite (12) using w and t:

min α2k−1

β2

∫ α
0
dkw(t)
dtk

dt (13)

s.t. w(ti) = β1 + β2w̃i, i = 1, ...,m
dpw(t)
dtp |t=tj = 0 or free, tj = 0, α; p = 1, ..., k

Note that in this problem the boundary conditions are spa-
tially shifted by β1 and scaled by β2 and time is scaled by α.
Letting the optimal solution to the nondimensional problem
be w̃∗ the solution to the new problem is

w∗(t) = β1 + β2w̃
∗ (t/α) .

Now let’s consider the nondimensional form of (10) where
r, ψ, and t are replaced by the nondimensional variables
r̃, ψ̃, and τ . One can solve four nondimensional problems
by letting r̃T = [w̃1, w̃2, w̃3]

T and ψ̃T = w̃4. Then the
optimal nondimensional solutions, w̃∗i (t), can be mapped to
the optimal solutions for xT , yT , zT , and ψT in the original
problem (10). The time scale, α, is the same for each variable
but the spatial transformation, β1 and β2, can be different.

1) Temporal Scaling: If we change the time to navigate
the keyframes by a factor of α so that the new times to reach
the keyframes are ti = ατi the solution to the true problem is
simply a time-scaled version of the nondimensional solution:

r∗T (t) = r̃∗T (t/α), ψ
∗
T (t) = ψ̃∗T (t/α).

As α is increased the plan takes longer to execute and
becomes safer. As α goes to infinity all the derivatives of
position and yaw angle as well as the angular velocity go to
zero which leads to

u(t)→ [mg, 0, 0, 0]T .

We can therefore satisfy any safety constraint by making
α large enough. Conversely, as α is decreased the trajectory
takes less time to execute, the derivatives of position increase,
and the trajectory becomes more aggressive.

2) Spatial scaling: Here we describe how the spatial scal-
ing property can be exploited for trajectories with only two
keyframes. We consider a single case of the nondimensional
form of (10) where r̃T (0) = 0 and r̃T (1) = 1 and the
final velocities are specified in the same way as in the true
problem. The optimal solution to the actual problem is then

x∗T (t) = x0 + (x1 − x0)x̃∗T (t/t1),

and likewise for y∗T (t) and z∗T (t). This is convenient because
it is faster to analytically modify a solution than to solve a
QP. For this reason, this approach is useful for quickly react-
ing to dynamic obstacles or targets. Note that spatial scaling
also applies to the problem with multiple keyframes but the
property is less useful as the positions of all keyframes must
be scaled by the same factor.
B. Adding corridor constraints

We will now add corridor constraints to (10). First we
define ti as the unit vector along the segment from ri to
ri+1. The perpendicular distance vector, di(t), from segment
i is defined as

di(t) = (rT (t)− ri)− ((rT (t)− ri) · ti)ti.
A corridor width on the infinity norm, δi, is defined for each
corridor:

‖di(t)‖∞ ≤ δi while ti ≤ t ≤ ti+1.

This constraint can be incorporated into the QP by introduc-
ing nc intermediate points as∣∣∣∣xW · di(ti + j

1 + nc
(ti+1 − ti)

)∣∣∣∣ ≤ δi for j = 1, ..., nc

and equivalently for yW and zW . Note that each absolute
value constraint can be written as two linear constraints. The
use of corridor constraints is shown in Fig. 2. In the left figure

2523

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

−0.5 0 0.5 1 1.5−0.5

0

0.5

1

1.5

2

2.5

x (m)

y
(m

)

−0.5 0 0.5 1 1.5−0.5

0

0.5

1

1.5

2

2.5

x (m)

y
(m

)

0 1

23

0 1

23

Fig. 2. Optimal trajectories (red) passing through 4 keyframes (black).
Left: no corridor constraints. Right: corridor constraint between keyframes
2 and 3 forces changes from the unconstrained trajectory on the left.

the optimization problem is solved without any corridor
constraints and in the right figure a corridor constraint is
added for the 2nd segment (δ2 = 0.05 and nc = 8). The
trajectory stays within the dotted lines that illustrate the
corridor.
C. Optimal segment times

In some cases the arrival times at different keyframes is
important and may be specified. However, in other cases
these arrival times may not matter and we can try to find
a better solution by allowing more time for some segments
while taking the same amount of time away from the others.
Here we describe a method for finding the optimal relative
segment times for a given set of keyframes. For this part it
is more convenient to think of the time allowed for segment
i, Ti, rather than the arrival time for keyframe i, ti, where
Ti = ti − ti−1. We then solve the minimization problem:

min f(T) (14)
s.t.

∑
Ti = tm

Ti ≥ 0

where f(T) is the solution the optimization problem (10)
for segment times T = [T1, T2, ..., Tm]. We solve (14)
via a constrained gradient descent method. We do this
by numerically computing the directional derivative for m
vectors denoted by gi:

∇gif =
f(T+ hgi)− f(T)

h
,

where h is some small number. The vectors gi are con-
structed so that the ith element has a value of 1 and all other
elements have the value −1

m−2 . This is done so that
∑

gi = 0
and gi can be added or subtracted from T and the final
time does not change. Given the estimates of the directional
derivatives we perform gradient descent using backtracking
line search.

An illustration of this method for a trajectory in the x− y
plane where the keyframes are points on the plane is shown
in Fig. 3. The first choice of segment times was chosen by
assuming the quadrotor travels in straight line paths from
keyframe to keyframe at a uniform velocity. This initial
choice allocates too much time for the 2nd segment and the
trajectory for this segment deviates significantly from the
keyframes. The algorithm converges to an optimal solution
after 7 iterations as shown in Fig. 3. The final trajectory
appears to be a very natural trajectory for passing through

0 1 2 3−0.5

0

0.5

1

1.5

2

2.5

y
(m

)

x (m)
1 2 3 4 5 6 70.4

0.6

0.8

1

1.2

1.4

1.6x 105

f(T
)

Iteration

k=1

k=7

Iteration 1

Iteration 7

Fig. 3. Illustration of relative time scaling. Left: Trajectory for different
iterations. Right: Cost function vs. iteration.

0 0.2 0.4 0.6 0.8

−0.05

0

0.05

Time (s)

Er
ro

r (
m

)

0 0.2 0.4 0.6 0.80

1

2

3

4

Time (s)

Ve
lo

ci
ty

 (m
/s

)x
y
z

desired
actual

Fig. 4. Performance data for a trajectory for flying through a thrown hoop.

all keyframes which qualitatively validates the choice of the
cost function.

VI. EXPERIMENTS

All experiments in this paper are conducted with the
Ascending Technologies Hummingbird quadrotor [18]. We
use a Vicon motion capture system [19] to estimate the
position, orientation, and velocity of the quadrotor and
the onboard gyros to estimate the angular velocities. The
software infrastructure is described in [15].
A. Spatially Scaled Trajectories

This experiment demonstrates how the spatially scaled
trajectory is used to fly through a thrown circular hoop. After
detecting that the hoop has been thrown the future position
of the hoop is predicted with a quadratic air drag model.
The predicted future time and x and y position of descent
through a chosen z plane is found. The chosen z-plane is 0.6
meters below the quadrotor. The allowed region for hoop
interception is x ∈ [1.2, 1.6] meters and y ∈ [−0.4, 0.4]
meters, where x is towards the hoop. The time allowed for
all trajectories, t1, is 0.9 seconds. The x and z velocity are
allowed to be free so the quadrotor can fly forward and down
through the hoop while the y velocity is constrained to be
zero as it is assumed the hoop falls approximately straight
down. The worst case performance is for the position the
farthest away (x = 1.6 meters and y = 0.4 meters) for
which data is shown in Fig. 4.

Even in this worst-case scenario the position error is
always less than 8 cm in any direction. Note that this is a
highly aggressive trajectory as the quadrotor quickly reaches
a velocity of 3.6 m/s and at one point hits a pitch angle
of 60◦. A series of images showing the full experiment are
shown in Fig. 5.
B. Temporal Scaling, Corridor Constraints, and Optimal
Segment Times

This experiment demonstrates the ability to fly through
environments with several narrow gaps. We design a sce-

2524

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Composite image of a single quadrotor flying through a thrown
circular hoop. See attached video or http://tinyurl.com/pennquad.

−1 0 1−1.5

−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

−1 0 1
1.5

2

2.5

x (m)

z
(m

)

0 5 10 15 20

−0.1

−0.05

0

0.05

0.1

0.15
Er

ro
r (

m
)

Time (s)

0 5 10 15 20

−0.1

−0.05

0

0.05

0.1

0.15

Er
ro

r (
m

)

Time (s)

x
y
z

x
y
z

tm= 8 sec

tm= 4 sec

Fig. 6. Trajectory generated to fly through three gaps (left) and performance
data for two traversal speeds (right).

nario with three fixed circular hoops the quadrotor must
continuously fly through. Six keyframes with the identical
yaw angles are selected at 0.25 meters on either side of the
gaps with a small corridor constraint, 1 cm, added for the
segments passing through the gaps. The corridor widths for
the other segments are allowed to be 1 meter so the quadrotor
may take a less direct and lower cost path where there is no
position constraint. Since arrival time at the keyframes is not
important for this problem the segment times are determined
by solving (14). The final trajectory generated is shown in
Fig. 6.

This generated trajectory can be tracked at different
speeds. The right side of the Fig. 6 shows 24 seconds of
performance data for tracking this trajectory in 8 seconds
(top) and 4 seconds (bottom). The data shows that we
can tradeoff speed for accuracy. The faster trajectory has
velocities as large as 2.6 m/s and roll and pitch angles of up
to 40◦. Images from the faster experiment are shown in Fig.
7. The tracking performance of a particular trajectory is very
repeatable as can be seen by the periodicity in the errors in
Fig. 6.

VII. CONCLUSION

We presented a quadrotor control algorithm for following
aggressive trajectories requiring large accelerations and an
automated approach to synthesizing three-dimensional tra-
jectories for quadrotors that can satisfy constraints on po-
sitions, velocities, accelerations and inputs. The trajectories
are optimal in the sense that they minimize cost functionals
that are derived from the square of the norm of the snap
(the fourth derivative of position). These cost functionals are
meaningful since the input variables are algebraically related
to the snap. The time scaling property of this approach allows

Fig. 7. Composite image of a single quadrotor quickly flying through three
static circular hoops. See attached video or http://tinyurl.com/pennquad.

trajectories to be slowed down to be made safer.

REFERENCES

[1] D. Pines and F. Bohorquez, “Challenges facing future micro air vehicle
development,” AIAA Journal of Aircraft, vol. 43, no. 2, pp. 290–305,
2006.

[2] D. Gurdan, J. Stumpf, M. Achtelik, K. Doth, G. Hirzinger, and D. Rus,
“Energy-efficient autonomous four-rotor flying robot controlled at 1
khz,” in Proc. of the IEEE Int. Conf. on Robotics and Automation,
Roma, Italy, Apr. 2007.

[3] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, Anchorage, AK,
May 2010, pp. 1642–1648.

[4] R. He, A. Bachrach, M. Achtelik, A. Geramifard, D. Gurdan, S. Pren-
tice, J. Stumpf, and N. Roy, “On the design and use of a micro air
vehicle to track and avoid adversaries,” The Int. Journal of Robotics
Research, vol. 29, pp. 529–546, 2010.

[5] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter tra-
jectory tracking control,” in AIAA Guidance, Navigation and Control
Conference and Exhibit, Honolulu, Hawaii, Apr. 2008.

[6] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design
of guaranteed safe maneuvers using reachable sets: Autonomous
quadrotor aerobatics in theory and practice,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation, Anchorage, AK, May 2010,
pp. 1649–1654.

[7] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems, vol. 16, 2003.

[8] R. Tedrake, “LQR-Trees: Feedback motion planning on sparse ran-
domized trees,” in Proc. of Robotics: Science and Systems, Seattle,
WA, June 2009.

[9] P. Abbeel, “Apprenticeship learning and reinforcement learning with
application to robotic control,” Ph.D. dissertation, Stanford University,
Stanford, CA, Aug. 2008.

[10] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers,” in Int. Symposium on
Experimental Robotics, Dec. 2010.

[11] H. Kim, D. Shim, and S. Sastry, “Nonlinear model predictive tracking
control for rotorcraft-based unmanned aerial vehicles,” vol. 5, 2002,
pp. 3576 – 3581.

[12] J. Yu, A. Jadbabaie, J. Primbs, and Y. Huang, “Comparison of
nonlinear control design techniques on a model of the caltech ducted
fan,” in IFAC World Congress, IFAC-2c-112, 1999, pp. 53–58.

[13] A. Jadbabaie and J. Hauser, “On the stability of receding horizon
control with a general terminal cost,” Automatic Control, IEEE Trans-
actions on, vol. 50, no. 5, pp. 674 – 678, may. 2005.

[14] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory
generation for differentially flat systems,” International Journal of
Robust and Nonlinear Control, vol. 8, pp. 995–1020, 1998.

[15] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro uav testbed,” IEEE Robotics and Automation Magazine,
Sept. 2010.

[16] T. Lee, M. Leok, and N. McClamroch, “Geometric tracking control
of a quadrotor uav on SE(3),” in Proc. of the IEEE Conf. on Decision
and Control, 2010.

[17] T. Flash and N. Hogan, “The coordination of arm movements: An
experimentally confirmed mathematical model,” The Journal of Neu-
roscience, vol. 5, pp. 1688–1703, 1985.

[18] “Ascending Technologies, GmbH,” http://www.asctec.de.
[19] “Vicon Motion Systems, Inc.” http://www.vicon.com.

2525

Authorized licensed use limited to: Zhejiang University. Downloaded on March 03,2025 at 03:03:20 UTC from IEEE Xplore. Restrictions apply.

